A robust segmentation approach for noisy medical images using fuzzy clustering with spatial probability
نویسندگان
چکیده
Image segmentation plays a major role in medical imaging applications. During last decades, developing robust and efficient algorithms for medical image segmentation has been a demanding area of growing research interest. The renowned unsupervised clustering method, Fuzzy C-Means (FCM) algorithm is extensively used in medical image segmentation. Despite its pervasive use, conventional FCM is highly sensitive to noise because it segments images on the basis of intensity values. In this paper, for the segmentation of noisy medical images, an effective approach is presented. The proposed approach utilizes histogram based Fuzzy C-Means clustering algorithm for the segmentation of medical images. To improve the robustness against noise, the spatial probability of the neighboring pixels is integrated in the objective function of FCM. The noisy medical images are denoised, with the help of an effective denoising algorithm, prior to segmentation, to increase further the approach’s robustness. A comparative analysis is done between the conventional FCM and the proposed approach. The results obtained from the experimentation show that the proposed approach attains reliable segmentation accuracy despite of noise levels. From the experimental results, it is also clear that the proposed approach is more efficient and robust against noise when compared to that of the FCM.
منابع مشابه
Intrathoracic Airway Tree Segmentation from CT Images Using a Fuzzy Connectivity Method
Introduction: Virtual bronchoscopy is a reliable and efficient diagnostic method for primary symptoms of lung cancer. The segmentation of airways from CT images is a critical step for numerous virtual bronchoscopy applications. Materials and Methods: To overcome the limitations of the fuzzy connectedness method, the proposed technique, called fuzzy connectivity - fuzzy C-mean (FC-FCM), utilized...
متن کاملRobust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملA Robust Fuzzy Clustering Technique with Spatial Neighborhood Information for Effective Medical Image Segmentation
Medical image segmentation demands an efficient and robust segmentation algorithm against noise. The conventional fuzzy c-means algorithm is an efficient clustering algorithm that is used in medical image segmentation. But FCM is highly vulnerable to noise since it uses only intensity values for clustering the images. This paper aims to develop a novel and efficient fuzzy spatial c-means cluste...
متن کاملRobust Segmentation Using Kernel and Spatial Based Fuzzy C-means Methods on Breast X-ray Images
Robust methods for precise segmentation of breast region or volume from breast X-ray images, including mammogram and tomosynthetic image, is crucial for applications of these medical images. However, this task is challenging because the acquired images not only are inherent noisy and inhomogeneous, but there are also connected or overlapped artifacts, or noises on the images as well, due to loc...
متن کاملHybrid Methods of Spatial Credibilistic Clustering and Particle Swarm Optimization in High Noise Image Segmentation
information from the original image as compared with crisp or hard segmentation methods. In practice, noisy images (even high noise images) are very common. It's very essential and critical to deal with such images to process real-image segmentation and pattern recognition. In this paper, differences of credibilistic clustering algorithm (CCA) and fuzzy c-means algorithm (FCM) in dealing with n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. Arab J. Inf. Technol.
دوره 9 شماره
صفحات -
تاریخ انتشار 2012